The Power of Semidefinite Programming Relaxations for MAX-SAT
نویسندگان
چکیده
Recently, Linear Programming (LP)-based relaxations have been shown promising in boosting the performance of exact MAX-SAT solvers. We compare Semidefinite Programming (SDP) based relaxations with LP relaxations for MAX2SAT. We will show how SDP relaxations are surprisingly powerful, providing much tighter bounds than LP relaxations, across different constrainedness regions. SDP relaxations can also be computed very efficiently, thus quickly providing tight lower and upper bounds on the optimal solution. We also show the effectiveness of SDP relaxations in providing heuristic guidance for iterative variable setting, significantly more accurate than the guidance based on LP relaxations. SDP allows us to set up to around 80% of the variables without degrading the optimal solution, while setting a single variable based on the LP relaxation generally degrades the global optimal solution in the overconstrained area. Our results therefore show that SDP relaxations may further boost exact MAX-SAT solvers. In Proc. Conf. Integration of AI/OR (CPAIOR06), 2006.
منابع مشابه
Semidefinite Optimization Approaches for Satisfiability and Maximum-Satisfiability Problems
Semidefinite optimization, commonly referred to as semidefinite programming, has been a remarkably active area of research in optimization during the last decade. For combinatorial problems in particular, semidefinite programming has had a truly significant impact. This paper surveys some of the results obtained in the application of semidefinite programming to satisfiability and maximum-satisf...
متن کاملCsc5160: Combinatorial Optimization and Approximation Algorithms Topic: Semidefinite Programming 22.1 Semidefinite Programming Problem
In this lecture, we provide another class of relaxations, called Semidefinite Programming Relaxation. These serve as relaxations for several NP-hard problems, in particular, for problems that can be expressed as strict quadratic programs. The relaxed problems, together with techniques like randomized rounding, give good approximation algorithms to hard combinatorial problems. We will illustrate...
متن کاملSums of squares based approximation algorithms for MAX-SAT
We investigate the Semidefinite Programming based Sums of squares (SOS) decomposition method, designed for global optimization of polynomials, in the context of the (Maximum) Satisfiability problem. To be specific, we examine the potential of this theory for providing tests for unsatisfiability and providing MAX-SAT upper bounds. We compare the SOS approach with existing upper bound and roundin...
متن کاملSemidefinite Relaxations for Integer Programming
We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to ...
متن کاملStrengthened Semidefinite Programming Relaxations for the Max-cut Problem
In this paper we summarize recent results on finding tight semidefinite programming relaxations for the Max-Cut problem and hence tight upper bounds on its optimal value. Our results hold for every instance of Max-Cut and in particular we make no assumptions on the edge weights. We present two strengthenings of the well-known semidefinite programming relaxation of Max-Cut studied by Goemans and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006